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The q-state Potts model on the square lattice is studied by Monte Carlo 
simulation for q = 3, 4, 5, 6. Very good agreement is obtained with exact results 
of Kihara et al. and Baxter for energy and free energy at the critical point. 
Critical exponent estimates for q = 3 are c t~0,4 ,  fl ,~0.1, - / ~  1.45, in rough 
agreement with high-temperature series extrapolation and real space renormali- 
zation-group methods. The transition for q = 5, 6 is found to be a very weakly 
first-order transition, i.e., pronounced "pseudocritical" phenomena occur, spe- 
cific heat, susceptibility, etc. (nearly) diverge at the first-order transition temper- 
ature. Dynamics is associated to the model in the same way as for the kinetic 
Ising model, and the nonlinear slowing down of the order parameter and of the 
energy is studied. The dynamic exponent is estimated to be A (=  z p ) ~  1.9. 
Within our accuracy no q dependence is detected. The relaxation is found to be 
consistent with dynamic scaling predictions, and dynamic scaling functions 
associated with the nonlinear relaxation are estimated. 

KEY WORDS: Potts model; first-order transition; second-order transition; 
Monte Carlo; critical slowing down; critical exponents; dynamic scaling; 
nonlinear relaxation. 

1. INTRODUCTION 

Recently there has been much interest in the critical behavior of the q-state 
Potts model, (1'2~ whose Hamiltonian is 

~c = - J  2 8s,~, ,i = 1 ,2 , . . . ,  q (1) 
(i,j) 

where the summation extends over all nearest neighbor pairs on the lattice. 
Note that certain physical systems belong to the same universality class as 
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this model, such as ordered absorbed monolayers (3-5) (for dimensionality 
d = 2) and (in the case q = 3, d = 3) cubic ferromagnets in a field applied 
in the [111] direction, (6"7) or certain structural transitions. (8a~'2 In addition, 
this model is a stringent testing ground for approximate theories on phase 
transitions, because the order of the transition depends on both q and d in a 
sensitive way: Landau theory (9) (as well as mean-field (2) and related (m) 
approximations) predict the transition to be first order for all q/> 3 irre- 
spective of d. Renormalization-group e-expansions (~H4) show that this is 
correct close enough to the marginal dimensionality d * =  6, while it is 
known exactly (15) that the transition is of second order for q < 4 and d = 2. 
High-temperature series expansions show the transition to be of first order 
for q = 4, d = 4, (16~ but cannot give a clear answer concerning the order of 
the transition at lower q and lower d. (9'~7-22) The suggestion (2~ that for 
d = 3, q = 3 a weak first-order transition could be accompanied by critical 
divergences received some recent support from Monte Carlo work (23) 
(which also suggests that the case d = 3, q = 4 is clearly first order), while 
Monte Carlo renormalization (24) suggests for q = 3, d /> 3 the occurrence 
of a "pseudospinodal singularity ''(25~ of metastable states in the close 
neighborhood of the transition temperature. While for d = 2 this method (26) 
as well as standard real space renormalization-group approaches (4'2v-33~ 
yield reasonable exponent estimates for q < 4. Only one recent version (33) 
yielded a change in the order of the transition (from second to first order 
for q > qc, with qc = 4.73). While in the case d = 2, q = 3 series expansion 
estimates for the specific heat exponent ranged from a = 0,05 (9) to a = 0. 
42 (34) or a = 0.30, (35) and the adsorption experiment yielded a = 0.36, (361 
for q = 4 the series estimates range from a = 0.45 (35) to a = 0.64. ~37) On the 
other hand, it has been conjectured that a (q  = 3 ) =  1/3 and a(q = 4 )  
= 2 / 3  hold exactly. (38) 

In view of all these efforts, it seems interesting to apply Monte Carlo 
methods (39) to this model also for d = 2: first we can check whether this 
method is able to correctly distinguish the order of the transitions and 
accurately estimate the magnitudes of first-order jumps. This question is 
nontrivial, since using too short observation times, one will observe an 
apparent  hysteresis even for second-order transitions, due to critical slowing 
down. (4~ We suspect the hysteresis reported for q = 3, d = 3 in Ref. 24 may 
be exaggerated due to this effect, since other studies employing longer 
observation times found no hysteresis but slow, smooth relaxation in- 
stead. (23) Furthermore, one can check whether the Monte Carlo data are 
consistent with the exponent predictions mentioned above. One obtains 
data also on thermodynamic functions away from the critical point, which 

2 See Ref. 8b for a discussion of the relevance of the Potts model for liquid mixtures. 
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could be used to check corresponding real space methods [which so far 
have been applied to the Ising case (q = 2) only, (41) however]. Since the 
Monte Carlo method has a stochastic dynamics intrinsically built in, (39) 
one can at the same time study the critical dynamics of the model in much 
the same way as was done for the kinetic Ising model for d = 3 (42) and 
d = 2. (43) Hence we first (Section 2) discuss static properties and compare 
them to the various theoretical predictions mentioned above, and then 
study dynamic properties' (Section 3), for which a real space renorma- 
lization-group treatment is underway. (44) Our emphasis will be on nonlin- 
ear relaxation, which has found most interest recently (see, e.g., Refs. 43 
and 45-50). Section 4 contains our conclusions. 

2. STATIC PROPERTIES 

We have applied standard Monte Carlo methods, (39) studying finite 
square lattices with periodic boundary conditions, using lattice sizes N from 
N = 16 • 16 up to N = 200 • 200 to detect finite-size effects, and observa- 
tion times of up to 104 Monte Carlo steps (MCS)/site. As initial condition 
we typically used an ordered state {all s i = 1 ) and then let the system relax 
toward equilibrium, recording energy per site U(t)= % / N  and order 
parameter M ( t), 

M(t) = [ q N l ( t ) / N -  1 ] / ( q - 1 )  (2) 

where N~(t) is the number of sites i with s,. =/~ at time t of the simulation. 
Averaging of both energy and order parameter was begun only when both 
quantities had safely reached equilibrium, and "susceptibilities" X1,X2 as 
well as the specific heat C were calculated from the fluctuation formulas 

kBTx, = I ( N21( t)) - ( N]( t))Z]/ N 
q 

k~Tx2= ~, [ ( N ~ ( t ) ) - ( N ~ ( t ) ) z ] / [ N ( q  - 1)] (3) 

( k , T / j ) 2 C  = UI(U2(t))  - (U(t) )  z] 

Note that in the disordered regime above T c we have X] = X2, of course. 
Neither for q = 5 nor for q = 6 did we succeed in observing any clear 

indication of the hysteresis associated with metastable states that one 
expects to occur at first-order transitions, and have indeed been observed in 
Monte Carlo studies of the field-induced first-order transition of Ising 
models below To. (51) One rather observes monotonic relaxation toward 
equilibrium which becomes very stow near T c (Fig. 1), and the behavior is 
very similar to that for q - - 3  or q - - 4  (Fig. 2). If we would follow the 
standard behavior of recording hysteresis loops with the Monte Carlo 
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procedure, i.e., taking averages over successive temperatures over the same 
time interval At and using the final state at each temperature T as starting 
configuration for the next temperature T +__ ~T, we would observe hysteresis 
for all q. But this "hysteresis" would strongly depend on the magnitude of 
At, and particularly for a At as small as At = 100 MCS (as used in Ref. 24) 
and k B S T / J  = 0.02 this "hysteresis" would be quite pronounced, as is seen 
from Fig. 3b. For smaller 8 T / A t  one obtains better results, of course. In 
Fig. 3a our final estimates for the temperature dependence of the energy is 
plotted. We have included the exact values of the energy at T~ from Kihara 
et al.,(2) 

(Uc- + Ur + ) / 2 J  = - 1 -  1/~/q (4) 

where 

U~-= lim ( U )  and U~ + =  lim ( U )  
T-+ T c- T-+ Tc + 

(U~- = U~ + at second-order transitions, of course). From Baxter's (15) result 
for the latent heat (q > 4, O -- arcosh qq-/2) 

U ~ + - U c - (  1 ) | ~ ( t a n h n O )  2 (5) j - 2  l+~- -q  tanh~-  = 1 

and Eq. (4), Uc + , Uc- can be calculated separately, and are included in Fig. 
3. It is seen that the jump of the energy for q = 5,6 is rather small, 
(Uc + - U~-) /J  ~ 0.0529 for q = 5 and (Uc + - Ur ~ 0.2015 for q = 6. 
Since the energy changes from its low-temperature behavior ( ( U )  close to 
Uo/J  = - 2 )  to its high-temperature behavior ( ( U )  close to U ~ / J  = - 
2 / q )  in a fairly narrow temperature interval, the first-order transition is 
preceded by strong "precursor effects." In fact, Fig. 3 would be consistent 
with a power-law divergence of the specific heat at the first-order transition. 
For larger q the jump would be larger [(Uc + - U~-) /J-~ 0.3533 for q = 7, 
(U~ + - U~-) /J  ~ 0.4864 for q = 8, etc.], but since T~ decreases at the same 
time,(2) 

k B T J J =  1/ln(1 +Tq-) (6) 

the behavior will be qualitatively similar. 
A power-law divergence of the specific heat would imply the following 

behavior of the internal energy: 

( U ) T < r  " = U c- - A - ( 1 -  T / T ~ )  1-"-,  
(7) 

= Uc + +A+(1- L / T )  ' -o+  
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Fig. 3. (a) Equilibrium energy U(t)  plotted versus temperature for q = 3, 4, 5, 6. Exact critical 
values are calculated from Kihara et al. (2) and Baxter. (15) (b) Apparent "hysteresis" loop for 
q = 5 recorded as described in the text. 

with exponents a _ ,  a+ > 0. Hence we show energy differences ( ( U ) -  
Uc-)/U C- and (Uc + - (U))/U~ + on a log-log plot in Fig. 4. On the other 
hand, if well-defined metastable states would occur, the energy presumably 
could be represented in terms of a specific heat diverging at "pseu- 
dospinodal temperatures" T~-, T~ + , 

( U)T<r ,  = (Uc-)sp - A - ( 1  - T/T~ + )'-~- 

( U ) T > r  " = (Uc +),p + A +(1 - Tc-/T) t-'+ (8) 

with T c - <  T~ < T~ + (see Fig. 5). Equation (8) implies a finite slope 
d( U)/dT at T = T~, and hence in Fig. 4 the slope should be unity. Instead 
we see slopes much smaller than unity, implying large exponents a_ ,  a+ 
even for q/> 5, whose values are reasonably consistent with previous 
estimates where the transition was found to be of second order. (21'27-3~ 
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If we a s s u m e  Eq. (8) to be  va l id  a n d  a s s u m e  tha t  a +  ~ a _  ~ 2 / 3 ,  as 

well  as a m p l i t u d e s  A +/J  a n d  A - / J  of o rder  un i ty ,  a n d  ( U  t-)s0 = (Uc+)sp 
as well  as A T  ~_ T c - To- = T~ + - T c for  s implici ty ,  we c a n  use the exact  
va lues  of the ene rgy  j u m p  (Uc + - U~-)/J to es t imate  AT, 

(U~ + - U ~ - ) / J ~ 2 ( 1 -  TJTc+)I /a~2(AT/T~)  '/3 (9) 

H e n c e  even  for q = 6 we w o u l d  expect  a shift  of  the p s e u d o s p i n o d a l  
s ingu la r i ty  of n o  m o r e  t h a n  AT/T~ ~-, 10 -3,  a n d  the shift  in  the  case q = 5 
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would be even smaller. On the basis of this estimate we would expect to see 
a behavior consistent with Eq. (7) in Fig. 4 up to values J l - T/Tc[ of order 
AT/To, where then a crossover to slope unity should set in. Since the 
reduced temperatures J l - T/TcI available in Fig. 4 are much larger, this 
behavior, which follows from Eq. (8), is also consistent with our data, 
although at first glance the data (Fig. 3) seem to imply that the behavior is 
that of Fig. 5B instead of Fig. 5A. In order to distinguish these two types of 
behavior, one would have to go an order of magnitude closer to To, which 
(because of finite-size rounding phenomena) would require systems of size 
N ~  103x 103. Due to the pronounced slowing down at the transition 
(Section 3), this would be far beyond present computer capabilities. In the 
case q = 3, d = 3 current estimates for a+,a_ range from about 0 . 4  (22) to 
about 0.5, (23) and (Uc + - Uc-)/J is estimated to be (23) less than 0.1; hence 
the situation is not much better. From these findings it is also not too 
surprising that high-temperature series expansions as well as many  real 
space renormalization-group calculations describe this transition for q 1> 5 
as second order: within the accuracy of these methods, there is no distinc- 
tion among To-, T~ + , and the true To. 

In Fig. 6 our estimates for the free energy are shown. We obtain the 
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free energy from integrat ions starting either from high or low temperatures,  
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Both methods give identical results (to within an accuracy of about 0.3%), 
and agree with the exact results of Baxter, ('5) 

( ~ B T )  = - - _  F + ~ d x  tanh(~rx/6)sinh(5~rx/6) 
F 1 In 3 + - -  ~ - 2.07 

q = 3 2 ~ - oo x sinh 7rx 

( l l a )  

( l lb )  ( k - J )  F(1/4) F -- - l n 2  + 41n 2F(3/4--------~ ~ -2 .26 
q=4 

( F ) _lnq2 ~ exp(-n@)tanhnOn 
k - ~  q>5 = -k- (9 + , = 1  ( l lc )  

where O = arcosh(~-/2)  and the summation yields ( F / k  s T)q= 5 , ~ -  2.41 
and ( F / k  s T ) q = 6  ~ --  2.54. 

Figures 7 and 8 show our results on the critical behavior for q = 3. The 
specific heat obtained from energy fluctuations and from numerical deriva- 
tives a ( U ) / a T  agree with each other within the accuracy (which is 
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typically about 10%), and this suggests an "effective exponent" a ~ 0.4 
consistent with the direct analysis of the energy (Fig. 4). A higher value 
quoted in preliminary communications on this work (53'54) was due to 
insufficient statistical accuracy. We denote this exponent "effective" be- 
cause the data are not extremely close to T c, and hence (unknown) 
correction terms may lead to errors of systematic nature. While our 
estimate is reasonably close to series extrapolation results (34~ and experi- 
ment, (36) it certainly does not exclude that asymptotically close to T c the 
data would yield an exponent a = 1//3. (38) Note that we have normalized 
the specific heat in Fig. 7 by such factors that it approaches unity for T - ) 0  
or I / T - ) 0 ,  respectively. Omitting these factors would produce strong 
curvature on the log-log plot in the considered temperature region. 

The same reservations have to be made with respect to order parame- 
ter and susceptibility as well (Fig. 8). Our estimates of the corresponding 
effective exponents f l ~ 0 . 1  and ~,~ 1.45 agree well with series esti- 
mates. (9'22) The scaling relation 7 + 2fl ( ~  1.65)= 2 -  a ( ~  1.60) is well 
satisfied within our error limits, since even if systematic errors due to 
correction terms are absent, the statistical inaccuracy of our data implies 
probable relative errors of our exponents of about 5%. 

As expected from our discussion of the energy, we find that specific 
heat and susceptibility seem to diverge at Tc even for q >/5. Again a 
distinction of "pseudospinodal singularities" and true divergences is not 
possible, since the expected T~-, Tc + are too close to To. Thus we do not 
discuss this behavior further. 

3. DYNAMIC PROPERTIES 

The dynamics of the model is described by a master equation for the 
probability P(X, t) of a configuration X of the system, 

de(X,O 
dt - ~ W(X---> X ' ) P ( X , t )  + ~a W ( X '  - )  X ) P ( X ' , t )  (12) 

X' X' 

the transition probability W being expressed in terms of the energy change 
% involved in the transition X---> X' as 

W ( X - ) X ' ) = e x p ( - 6 % / k B T  ) if 6 % > 0  (13a) 

W ( X - )  X') = 1 otherwise (13b) 

and the time t is measured in units of Monte Carlo steps/site. As changes 
X--~ X' we consider random changes of s i -~s j  ~ s i (taken out of the values 
1 . . . . .  q) of sites i selected at random. Nonlinear relaxation functions of 
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energy and  magnet iza t ion  are then defined as  u s u a l  (43'49) 

U ( O -  U ( ~ )  M ( O -  M ( ~ )  
~b (nl) ( t)  = U(0) U(oo) ' ~(M nl) ( t)  = M(0)  -- M(oo)  (14) 

where M(oo)-=(M> and U(oo)=--(U>. These functions are obta ined  
s t raightforwardly f rom the " raw da ta"  of the simulat ion (e.g., Figs. 1,2). 
Relaxat ion times are found  by  (numerical)  integrat ion of these functions, as 
usual,(43,49) 

'T(n])=~OO~176 T(Mn]'=~O~176 dt (15) 

While ( M )  = 0 for T > T C, our inaccurate  knowledge of ( M )  for T < T C 
leads to serious inaccuracies of "r~ l) close to Tc there. Therefore  we restrict 
our  analysis to T > T~. Figure 9 shows a log- log  plot  of these relaxat ion 
times for both  q = 3 and  q = 4. While ~.~1) closely follows a straight line, 
implying an exponent  m~l)~ 1.8, the results for 'F(U hI) show strong curvature.  
Thus  we consider instead the quant i ty  ~.~n0 = zu(1 _ ( U ) / ( U ) 0 ) ,  which 
has the same critical behavior  as ~-u but  removes  a correct ion term [arising 
f rom the denomina to r  of Eq. (14)]. For  this modif ied energy relaxation 
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time, most of the curvature on the log-log plot is removed, and an 
exponent estimate A ~ 0 ~  1.2 results. Both exponents should be related via 
the dynamic scaling law (47'49) 

A ( f f ) -  A ~  l) - -  1 - a - f l  ( 1 6 )  

which gives A~ l) - A~ l) ~-, 0.57 for q = 3, using fl ~ 0.1 and a = 1/3, while 
A(ff)-  A(01)~0.25 for q = 4, using f l ~ 0 . 0 8  (consistent with our direct 
observations of M for q = 4 not shown here) and a = 2/3.  It appears that 
Eq. (16) is reasonably well obeyed. Our estimates would imply that the 
exponent A _= vz ~ 1.9, independent of q within our accuracy (this holds 
even for the Ising case, q = 2). (43~ As with respect to static quantities, we 
should consider this value as an estimate of an effective exponent only, 
since correction terms cannot be excluded. Note that for q/> 3, A differs 
strongly from ,/, and hence there is a clear violation of the "conventional 
theory" of slowing down, which implies A = ,/.(43) 

A more detailed test of dynamic scaling is performed using q~(00(t) and 
q~O(t) and defining the functions (49) 

q~(01) = (1 - Tc/T)~-leob~l)(t), ~nl) = (1 - Tc/T)-Bq~nl)(t) (17) 

which no longer should depend on the two variables t, 1 - Tr separately 
but rather only on a single variable t = t(1 - Tel T) "z. Figures 10 and 11 
show that within our accuracy this type of scaling actually works, and 
hence the scaling functions ~(u~l)(t -) and ~(~0(t-) can be estimated. One 
expects that (4s-5~ 

 ucc t t'<< 1 (18a) 

exp(-  clt'), t'>>l (18b) 

;- ?<< 1 (18c) 

cc exp(-- c2t'), 7>> 1 (18d) 

where c 1 and c 2 are constants of order unity. While our data provide some 
evidence for relations (18a) and (18b), it turns out that ~M is fitted nearly 
completely by Eq. (18d): due to the smallness of fl, extremely small t ' (but 
nevertheless large t) are required to actually see the power-law decay of the 
order parameter relaxation (18c). Note also that due to the scatter of the 
data the plots in Figs. 10 and 11 are not very sensitive to the precise values 
of the exponents a, fl, and zp used. 

The results for larger q are qualitatively very similar to the case q = 3. 
Figure 12 summarizes the (apparent'?.) divergences associated with the 
first-order transition for q = 5. 



84 B i n d e r  

I 

200 

100 

50 
i(nl) 

M20 

10 
symbol quantity "~ 

o q kaT X/J i x 
= (k aT/J) 2 C 
�9 (kBTB) 2 dU/dT \ 
�9 I #LI \ 

% ~ / = 1 . 0 5  120 

~ . .  O5 

0 2  

I I I I I I m I I I i I l b .  

0,02 0.05 0,1 0.2 05 1.0 0.02 0,05 0.1 0,2 05 1,0 
1-Tc/T 1 -Tc/T 

Fig. 12. Log-log plot of the relaxation time versus temperature [left part] and susceptibility 
and specific heat [right part] for q = 5. 

4. C O N C L U S I O N S  

The phase transition of the q-state Potts model on the square lattice 
was studied for q = 3, 4, 5, 6 by Monte Carlo methods. The data obtained 
are nicely consistent with the exact critical temperatures, energies, and free 
energies (Figs. 3 and 6). We estimate "effective" critical exponents for q = 3 
as ct ~ 0.4, fl ~ 0.1, 3' ~ 1.45, in rough agreement with high-temperature 
series extrapolations and real space renormalization and the scaling relation 
2 - a = 3' + 2ft. The transition for q = 5, 6 is found to be a very weakly 
first-order transition: specific heat and susceptibility diverge either right at 
the transition temperature T c or at "pseudospinodal" temperatures Tc + , 
T~-, which are no more apart  from T~ than about AT/T~ 10 -3. The 
implication of our results for related studies of the three-dimensional 
systems is that great care is needed for the accurate estimate of the 
magnitude of jumps at first-order transitions. 

A kinetic Potts model is introduced in about the same way as the 
kinetic Ising model, defining time evolution in terms of a suitable master 
equation. This time evolution is directly realized by the Monte Carlo 
process. It  is shown that within the framework of this kinetic model we find 
no metastable states even in the case of first-order transitions, but pro- 
nounced critical slowing down. The exponent zl, associated with the slow- 
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ing down is estimated to be about 1.9, independent of q/> 2 within our 
accuracy. This result would imply a pronounced departure from the con- 
ventional slowing down (z~ = 3') for q >/3. The exponents associated with 
nonlinear relaxation of the order parameter and energy are estimated and 
found to be consistent with dynamic scaling. The associated scaled relax- 
ation functions also are estimated. 

ACKNOWLEDGMENTS 

The author is indebted to D. D. Betts, H. J. Hermann, L. P. Kadanoff, 
E. K. Riedel, and R. J. Swendsen for sending relevant preprints. He thanks 
A. Aharony for stimulating discussions, and T. Burkhardt and D. Stauffer 
for a careful reading of the manuscript. 

REFERENCES 

I. R.B. Potts, Proc. Camb. Phil Soc. 48:. 106 (1952). 
2. T. Kihara, Y. Midzuno, and T. Shizume, J. Phys. Soc. Japan 9:681 (1954). 
3. S. Alexander, Phys. Lett. A 54:353 (1975). 
4. E. Domany and E. K. Riedel, J. Appl. Phys. 49:1315 (1978). 
5. A.N.  Berker, S. Ostlund, and F. A. Putnam, Phys. Rev. B 17:3650 (1978). 
6. D. Mukamel, M. E. Fisher, and E. Domany, Phys. Rev. Lett. 37:565 (1976). 
7. B. Barbara, M. F. Rossignol, and P. Bak, o r. Phys. C U:LI83 (1978). 
8. (a) A. Aharony, K. A. Mtiller, and W. Berlinger, Phys. Rev. Lett. 38:33 (1977); (b) B. K. 

Das and R. B. Griffiths, Carnegie-Mellon University preprint. 
9. J .P.  Straley and M. E. Fisher, J. Phys. A 6:1310 (1973). 

10. P.M. Levy and J. J. Sudano, Phys. Rev. B 18:5087 (1978). 
11. G .R .  Golner, Phys. Rev. B 1t:3419 (1973). 
12. D.J .  Amit and A. Sherbakov, J. Phys. C 7:L96 (1974). 
13. R .G.  Priest and T. C. Lubensky, Phys. Rev. B 13:4159 (1976). 
14. R . K . P .  Zia and D. J. Wallace, J. Phys. A 8:1495 (1977). 
15. R.J .  Baxter, J. Phys. C 6:L445 (1973). 
16. R.V. Ditzian and L. P. Kadanoff, J. Phys. A 12:L229 (1979). 
17. R.V. Ditzian and J. Oitman, Jr. Phys. A 7:L61 (1974). 
18. I .G.  Enting, J. Phys. A 7:1617 (1974). 
19. I .G.  Enting and C. Domb, J. Phys. A 8:1228 (1975). 
20. J .P.  Straley, J. Phys. A 7:2173 (1974). 
21. D. Kim and R. I. Joseph, J. Phys. A 8:891 (1975). 
22. S. Miyashita, D. D. Betts, and C. J. Elliott, J. Phys. A 12:1605 (1979). 
23. H.J .  Herrmann, Z. Physik B 35:171 (1979). 
24. H . W . J .  B1/~te and R. H. Swendsen, Phys. Rev. Lett. 43:799 (1979). 
25. B. Chu, M. F. Schoenes, and M. E. Fisher, Phys. Rev. 185:219 (1969). 
26. R .H.  Swendsen, Phys. Rev. Lett. 42:859 (1979). 
27. T.W. Burkhardt, H. J. F. Knops, and M. den Nijs, J. Phys. A 9:Ll79 (1976). 
28. C. Dasgupta, Phys. Rev. B 15:3460 (1977). 
29. M . P . M .  den Nijs and H. J. F. Knops, Physica 93A:441 (1978). 
30. M . P . M .  den Nijs, Physica 95A:449 (1979). 



86 Binder 

31. A. Aharony, J. Phys. A.10:389 (1977). 
32. B.W. Southern, J. Phys. A 10:L253 (1977). 
33. B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, Phys. Rev. Lett. 43:737 (1979); 

see also T. Burkhardt, preprint. 
34. T. de Neef and I. G. Enting, J. Phys. A 10:801 (1977). 
35. R. Zwanzig and J. D. Ramshaw, J. Phys. A 10:65 (1977). 
36. M. Bretz, Phys. Rev. Lett. 38:501 (1977). 
37. I .G.  Enting, J. Phys. A 8:L35 (1975). 
38. M . P . M .  den Nijs, J. Phys. A 12:1857 (1979). 
39. K. Binder, ed., Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979). 
40. D.P.  Landau and K. Binder, Phys. Rev. B 17:2328 (1978). 
41. B. Nienhuis and M. Nauenberg, Phys. Rev. Lett. 35:477 (1975). 
42. H. M/Jller-Krumbhaar and K. Binder, J. Stat. Phys. 8:1 (1973). 
43. E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 8:3266 (1973). 
44. S.T. Chui, private communication, 
45. M. Suzuki, lnt. J. Magnetism 1:123 (1971). 
46. Z. Racz, Phys. Rev. B 13:263 (1976). 
47. M.E.  Fisher and Z. Racz, Phys. Rev. B 13:5039 (1976). 
48. K. Binder, D. Stauffer, and H. M~ller-Krumbhaar, Phys. Rev. B 12:5261 (1975). 
49. R. Kretschmer, K. Binder, and D. Stauffer, J. Star. Phys. 15:267 (t976). 
50. R. Bausch, E. Eisenriegler, and H. K. Janssen, Z. Physik B (1979). 
51. K. Binder and H. Miiller-Krumbhaar, Phys. Rev. B 9:2328 (1974). 
52. I .G.  Enting, J. Phys. A 7:2181 (1974). 
53. K. Binder, in Proceedings of the 4th EPS Gen. Conf., York, 1978 (Institute of Physics, 

London, 1979), p. 164. 
54. K. Binder, in Ordering in Strongly-Fluctuating Condensed-Matter Systems, T. Riste, ed. 

(Plenum Press, New York, to be published). 


